Acetylation at lysine 183 of progesterone receptor by p300 accelerates DNA binding kinetics and transactivation of direct target genes.

نویسندگان

  • Hwa Hwa Chung
  • Siu Kwan Sze
  • Alvin Shun Long Tay
  • Valerie C-L Lin
چکیده

The identification of lysine acetylation of steroid hormone receptors has previously been based on the presence of consensus motif (K/R)XKK. This study reports the discovery by mass spectrometry of a novel progesterone receptor acetylation site at Lys-183 that is not in the consensus motif. In vivo acetylation and mutagenesis experiments revealed that Lys-183 is a primary site of progesterone receptor (PR) acetylation. Lys-183 acetylation is enhanced by p300 overexpression and abrogated by p300 gene silencing, suggesting that p300 is the major acetyltransferase for Lys-183 acetylation. Furthermore, p300-mediated Lys-183 acetylation is associated with heightened PR activity. Accordingly, the acetylation-mimicking mutant PRB-K183Q exhibited accelerated DNA binding kinetics and greater activity compared with the wild-type PRB on genes containing progesterone response element. In contrast, Lys-183 acetylation had no influence on PR tethering effect on the nuclear factor κ-light chain enhancer of activated B cells (NFκB). Additionally, increases of Lys-183 acetylation by p300 overexpression or inhibition of deacetylation resulted in increases of Ser-294 phosphorylation levels. In conclusion, PR acetylation at Lys-183 by p300 potentiates PR activity through accelerated binding of its direct target genes without affecting PR tethering on other transcription factors. The effect may be mediated by enhancing Ser-294 phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor.

Using a variety of biochemical and cell-based approaches, we show that estrogen receptor alpha (ERalpha) is acetylated by the p300 acetylase in a ligand- and steroid receptor coactivator-dependent manner. Using mutagenesis and mass spectrometry, we identified two conserved lysine residues in ERalpha (Lys266 and Lys268) that are the primary targets of p300-mediated acetylation. These residues ar...

متن کامل

Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity.

Regulation of nuclear receptor gene expression involves dynamic and coordinated interactions with histone acetyl transferase (HAT) and deacetylase complexes. The estrogen receptor (ERalpha) contains two transactivation domains regulating ligand-independent and -dependent gene transcription (AF-1 and AF-2 (activation functions 1 and 2)). ERalpha-regulated gene expression involves interactions wi...

متن کامل

Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth.

Modification by acetylation occurs at epsilon-amino lysine residues of histones and transcription factors. Unlike phosphorylation, a direct link between transcription factor acetylation and cellular growth or apoptosis has not been established. We show that the nuclear androgen receptor (AR), a DNA-binding transcriptional regulator, is acetylated in vivo. The acetylation of the AR is induced by...

متن کامل

Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation.

Histone acetyltransferases (HATs) GCN5 and PCAF (GCN5/PCAF) and CBP and p300 (CBP/p300) are transcription co-activators. However, how these two distinct families of HATs regulate gene activation remains unclear. Here, we show deletion of GCN5/PCAF in cells specifically and dramatically reduces acetylation on histone H3K9 (H3K9ac) while deletion of CBP/p300 specifically and dramatically reduces ...

متن کامل

Steroid receptor induction of gene transcription: a two-step model.

Coactivators, such as steroid receptor coactivator 1 (SRC-1A) and CREB (cAMP response element binding protein)-binding protein (CBP), are required for efficient steroid receptor transactivation. Using an in vitro transcription assay, we found that progesterone receptor (PR)-driven transcription is inhibited by a dominant negative PR ligand-binding domain-interacting region of SRC-1A, indicating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 4  شماره 

صفحات  -

تاریخ انتشار 2014